科研领域描述
神经科学的核心目标是阐明感知、行为和意识等产生的神经机制。
利用果蝇、小鼠和非人灵长类等多种模式动物,我们研究以上过程:1) 视觉“暗光”的分子机制 (Science, 2011; Nature Neuroscience,2008; Current Biology, 2020); 2) 嗅觉编码机制 (PNAS, 2016; Nature Communications, 2017); 3) 机械感知对进食决策的调控 (Science Advances, 2019); 4) 生物钟的神经机制 (Nature Communications, 2018; Science Advances, 2022; Nature 2023)。
我们发展了国际前沿的神经电生理技术(包括活体动物脑的多电极膜片钳记录),结合分子遗传、光遗传和双光子钙成像等,揭示大脑产生感知和行为的基本规律。目前,正在进行的研究课题包括:(1) 感觉信号编码和加工的神经机制;(2) 进食等本能行为的神经机制; (3) 生物钟和睡眠的神经机制。
代表性论文
1. Xiao N, Xu S, Li ZK, Tang M, Mao R, Yang T, Ma SX, Wang PH, Li MT, Sunikumar A, Rouyer F, Cao LH, and Luo DG. (2023) A single photoreceptor splits perception and entrainment by cotransmission. Nature 623, 562-570.
2. Tang M, Cao LH, Yang T, Ma SX, Jing BY, Xiao N, Xu S, Leng KR, Yang D, Li MT, Luo DG.(2022) An extra-clock ultradian brain oscillator sustains circadian timekeeping. Science Advances 8, eabo5506.
3. Luo DG, Silverman D, Frederiksen R, Adhikari R, Cao LH, Oatis JE, Kono M, Cornwall MC, and Yau KW. (2020) Apo-opsin and its dark constitutive activity across retinal cone subtypes. Current Biology 30: 4921-4931.
4. Wu F, Deng B, Xiao N, Wang T, Li Y, Wang R, Shi K, Luo DG, Rao Y, Zhou C. (2020) A neuropeptide regulates fighting behavior in Drosophila melanogaster. Elife e54229.
5. Zhou Y, Cao LH, Sui XW, Guo XQ, and Luo DG. Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding. Science Advances 2019, 5: eaaw5141.
6. Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, and Luo DG. Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nature Communications 2018, 9: 4247.
7. Cao LH, Yang D, Wu W, Zeng X, Jing BY, Li MT, Qin SS, Tang C, Tu Y, and Luo DG. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nature Communications 2017, 8: 1357.
8. Yue WW, Frederiksen R, Ren X, Luo DG, Yamashita T, Shichida Y, Cornwall MC, Yau KW. Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket. eLife, 2017, 6. pii: e18492.
9. Cao LH, Jing BY, Yang D, Zeng X, Shen Y, Tu Y and Luo DG. Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA, 2016, 113, E902-E911.
10. Cao LH, Luo DG and Yau KW. Light responses of primate and other mammalian cones. Proc. Natl. Acad. Sci. USA, 2014, 111, 2752-2757.
11. Luo DG*, Yue WWs, Ala-Laurila P and Yau KW*. Activation of visual pigments by light and heat. Science, 2011, 332, 1037-1032. (*Co-corresponding Authors)
12. Fu Y*, Kefalov VJ*, Luo DG*, Xue T* and Yau KW. Quantal noise from human red cone pigment. Nature Neuroscience, 2008, 11, 565-571. (*Equal Contributions)
13. Luo DG, Xue T, and Yau KW. How vision begins: an odyssey. Proc. Natl. Acad. Sci. USA, 2008, 105, 9855-9862.
14. Su CY, Luo DG, Terakita A, Schichida Y, Liao HW, Kazmi MA, Sakamar TP and Yau KW. Parietal-eye phototransduction components and their potential evolutionary implications. Science, 2006, 311, 11617-11621.
15. Luo DG and Yau KW. Rod sensitivity of neonatal mouse and rat. J. Gen. Physiol., 2005, 126, 263-269.
16. Fu YB, Zhong HN, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ and Yau KW. Intrinsically photosensitive retinal ganglion cells detect light with a Vitamin A-based photopigment, melanopsin. Proc. Natl. Acad. Sci. USA, 2005, 102, 10339-10344.
17. Huttl S, Michalakis S, Seeliger M, Luo DG, Acar N, Geiger H, Hudl K, Mader R, Haverkamp S, MOser M, Pfeifer A, Gerstner A, Yau KW and Beil M. Impaired channel targeting and retinal degeneration i mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J. Neurosci., 2005, 25, 130-138.
18. Luo DG, Li GL and Yang XL. Zn2+ modulates light responses of color-opponent bipolar and amacrine cells in the carp retina. Brain Res. Bull., 2002, 58, 461-468.
19. Luo DG and Yang XL. Suppression by zinc of transient OFF responses of carp amacrine cells to red light is mediated by GABAa receptors. Brain Res., 2002, 958, 222-226.
20. Luo DG and Yang XL. Zn2+ differentially modulates signals from red- and short-wavelenth-sensitive cones to horizontal cells in carp reitna. Brain Res., 2001, 900, 95-102.
21. Xu HP, Luo DG and Yang XL. Signals from cone photoreceptors to L-tyoe horizontal cells are differntially modulated by low calcium in carp retina. Eur. J. Neurosci., 2001, 13, 1411-1419.
执教课程
本科生“生理学”
本科生“高级神经生物学”
研究生“神经生物学”
研究生“感觉神经生物学进展”
CLS/PTN研究生“神经生物学”
交叉学院研究生“生物物理”
实验室简介
神经科学的核心目标是阐明感知、行为和意识等产生的神经机制。
利用果蝇、小鼠和非人灵长类等多种模式动物,我们研究以上过程:1) 视觉“暗光”的分子机制 (Science, 2011; Nature Neuroscience,2008; Current Biology, 2020); 2) 嗅觉编码机制 (PNAS, 2016; Nature Communications, 2017); 3) 机械感知对进食决策的调控 (Science Advances, 2019); 4) 生物钟的神经机制 (Nature Communications, 2018; Science Advances, 2022; Nature 2023)。
我们发展了国际前沿的神经电生理技术(包括活体动物脑的多电极膜片钳记录),结合分子遗传、光遗传和双光子钙成像等,揭示大脑产生感知和行为的基本规律。目前,正在进行的研究课题包括:(1) 感觉信号编码和加工的神经机制;(2) 进食等本能行为的神经机制; (3) 生物钟和睡眠的神经机制。